April 22, 2018

Zapis dekadskog broja u računalu 3

Pretpostavimo da se cijeli brojevi u memoriji računala zapisuju u 8-bitovnim registrima metodom dvojnog komplementa. U dvama registrima zapisane su dekadske vrijednosti i . U treći registar treba spremiti zbroj sadržaja ovih registara. Koji je sadržaj trećeg registra?


\[93 + 49 = 142\] Sada moramo 142 prikazati u binarnom obliku. \[142 = 2 \cdot 71 + 0\] \[71 = 2 \cdot 35 + 1\] \[35 = 2 \cdot 17 + 1\] \[17 = 2 \cdot 8 + 1\] \[8 = 2 \cdot 4 + 0\] \[4 = 2 \cdot 2 + 0\] \[2 = 2 \cdot 1 + 0\] \[1 = 2 \cdot 0 + 1\]

Ostatke čitamo od dolje prema gore i dobijemo da je dekadski jednak binarni .

Ne trebamo dodavati nikakve nulice jer imamo 8 bitova.

Primjetimo da je na prvom (najteži bit) mjestu jedinica, a to znaći da je ovaj broj negativan. Jer znamo da negativni brojevi imaju na početku jednicu. To ćemo uzeti u obzir na kraju.

Sada treba komplementirati ( u i obrnuto) i dobijemo .

Još ovo treba zbrojiti s .

\[01110001 + 1 = 01110010\]

Ako traži zadatak dekadsko rješenje onda treba prebaciti u dekadski broj isto kao u zadatku Zapis dekadskog broja u računalu 2.

\[-0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0\] \[-0 + 64 + 32 + 16 + 0 + 0 + 2 + 0= 114\]

Rješenje je jer smo rekli da je broj negativan.